«по следам лавин»
Пятигорский информационно-туристический портал
 • Главная• СсылкиО проектеФото КавказаСанатории КМВ
«ПО СЛЕДАМ ЛАВИН» • Неожиданные лавиныОГЛАВЛЕНИЕ


 Горный туризм 

Неожиданные лавины

В истории изучения лавин есть одно удивительное обстоятельство. В Швейцарии, где впервые были начаты исследования лавин и где много лет существует единственный в мире институт изучения лавин, очень долго не занимались разработкой их прогноза методом критических ситуаций во время снегопадов и метелей. Причин для этого, видимо, было несколько: давние традиции тщательного исследования строения снежной толщи, глубокое понимание сложности происходящих в ней процессов и, наконец, достаточно хорошее представление о роли механических свойств снежного покрова в возникновении лавин. Но все же этот груз знаний, по-видимому, не позволял уяснить тот факт, что в условиях сильных снегопадов и метелей процессы в снежном покрове в своем развитии отстают от быстрого нарастания толщины свежеотложенного слоя, и рост нагрузки становится доминирующим фактором. Накладывало свой отпечаток и то, что исследователи лавин в Альпах прекрасно знали множество случаев, когда лавины срывались со склонов неожиданно, без особой видимой связи с внешними факторами при ясной безветренной погоде. „Мнение, что при морозной погоде лавины не сходят,— писал Матиас Здарский - еще в 1929 году,— или что любой снег через три дня осядет,— широко распространенное заблуждение".

Причина возникновения таких „не очевидных" лавин, когда сила тяжести остается постоянной, так как нет снегопада и метели, лежит в тех преобразованиях толщи снега, которые уменьшают силы, удерживающие его на склоне. В результате в какой-то момент эти силы становятся, сравнимы с составляющей силы тяжести и при дальнейшем ослаблении прочности снежного покрова возникает лавина.

Попытаемся выяснить, каков спусковой механизм подобных лавин, зарядом которых служит на сей раз не меняющаяся сила тяжести.

Снежный покров имеет две поверхности: нижняя — неподвижная, прилегающая к земле, и верхняя — подвижная, которая граничит с воздухом. Верхняя граница может изменяться во время снегопада или метели, а также в результате оседания и таяния снега. Оседание бывает наибольшим сразу после снегопада. Обычная скорость оседания снега меньше 1 сантиметра в сутки, но после снегопадов она может достигать и даже превышать 10 сантиметров в сутки. Иногда при слабом снегопаде толщина снега не увеличивается, а уменьшается, так как скорость его оседания больше скорости нарастания за счет свежеотложенного снега. Оседание в основном обязано чисто механическому уплотнению за счет передвижения и разлома снежных кристаллов под тяжестью вышележащего снега, но частично оно возникает в результате изменений самих кристаллов. В снежном покрове, при всем огромном разнообразии первоначально отложенных снежинок, идет процесс их превращения в довольно однообразные округлые или ограненные зерна разного размера. Этот процесс называют метаморфизмом. Причиной метаморфизма является температура.

В снежном покрове температура меняется довольно закономерно. На его нижней поверхности она обычно равна или близка к нулю, а в приповерхностном слое происходят колебания температуры, следующие за колебаниями температуры воздуха. Между температурой у поверхности и у грунта в зимнее время есть разница, которая характеризуется градиентом температуры, то есть ее изменением на каждый сантиметр глубины. Когда начинается таяние, температура снежной толщи становится однородной, равной нулю. В целом снежный покров на поверхности нашей планеты существует при температуре, близкой к точке плавления,— этим он резко отличается от прочих горных пород. Молекулы любого вещества в таких условиях очень подвижны и чувствительны к изменению внешних условий, поэтому огромная площадь поверхности, которую образуют кристаллы в снежном покрове, очень активна: между соседними кристаллами снега и между кристаллами и окружающей средой идет непрерывный обмен молекулами воды. Свежевыпавший снег — одно из самых неустойчивых веществ на земле: он начинает изменяться сразу же после отложения на поверхности грунта. Скорость метаморфизма и его направление определяются температурой: чем она выше, тем быстрее происходят изменения. Различают три типа метаморфизма: изотермический, который происходит при отсутствии в снежном покрове температурного градиента или когда последний очень мал, этот тип называют также деструктивным; метаморфизм при температурном градиенте в толще снега, его часто называют конструктивным; и метаморфизм таяния — замерзания. Каждый тип метаморфизма вызывает свои особые изменения в толще снега.

На начальной стадии изотермического метаморфизма при отсутствии температурного градиента снежинки теряют мелкие детали, распадаются на мелкие зерна, отчего этот тип метаморфизма и называют деструктивным, то есть разрушительным. Затем начинается постепенное округление зерен и рост более крупных за счет более мелких. Перенос вещества при этом происходит за счет испарения с острых выступающих деталей зерен и отложения его в местах соприкосновения зерен, где прилегающие друг к другу кристаллы создают вогнутую поверхность. За счет того, что на выступах давление водяного пара больше, чем в вогнутых полостях, в порах снежного покрова как бы действует множество мельчайших насосов, перекачивающих вещество, минуя жидкую фазу. Испарение вещества без перехода в жидкую фазу называют возгонкой, а переход этого пара прямо в твердое вещество — сублимацией. Таким образом, в снежной толще идут процессы возгонки и сублимации. Перенос молекул происходит также за счет еще недостаточно изученных процессов на поверхности ледяных частиц. Этот тип метаморфизма приводит к срастанию снежных зерен и в целом к упрочнению того слоя, где он развивается.

Когда в снежной толще возникает температурный градиент, он тоже начинает действовать как насос, перегоняя водяной пар из более теплых участков, где давление пара по законам физики выше, к более холодным, где оно ниже. При этом типе метаморфизма пар, оседая (сублимируясь) на зернах, преобразует их в угловатые, полые внутри, чашеобразные кристаллы, которые могут достигать 8—10 миллиметров в поперечнике. За такое строительство этот тип метаморфизма и называют конструктивным. Подобные кристаллы называют глубинной изморозью, а слой, в котором они развиваются, исследователи лавин в Альпах назвали снегом-плывуном, потому что в слоях глубинной изморози связи между ограненными зернами ослаблены, слой становится менее прочным и более рыхлым, и при механическом воздействии он обычно рассыпается на отдельные зерна. Нередко снег-плывун образуется в основании снежного покрова, на границе с грунтом, когда в начале зимы, еще при сравнительно тонком снежном слое, в нем возникает большой температурный градиент. В таком слое силы, удерживающие снег на склоне, уменьшаются, и в тот момент, когда они станут меньше составляющей силы тяжести, направленной вдоль склона, срывается лавина.

„Глубинная изморозь подкрадывается потихоньку,— пишет М. Отуотер,— месяц за месяцем. Я всегда считал, что мины — одна из отвратительнейших форм оружия. Эта бездушная штука лежит себе, поджидая кого-нибудь, кто пришел бы и зацепил спусковой механизм. Для мины неважно, будет ли жертва другом, врагом или ни тем и ни другим. Жертвой может оказаться любой". Морозная погода разбрасывает такие мины на склонах; бывает достаточно одной - двух недель мороза, чтобы образовался слой глубинной изморози.

Развитие слоев снега-плывуна тесно связано с толщиной снежного покрова: глубинная изморозь развивается быстрее там, где он тоньше. При прочих равных условиях на затененных склонах она образуется быстрее и имеет большую толщину. В суровых климатических условиях образование слоя глубинной изморози более вероятно, так же как и на больших высотах в горах. Разрыхленный снег не обязательно образует непрерывный слой; он может образовывать пятна в снежном покрове. Снег-плывун развивается не обязательно только на границе с грунтом: он может возникать и внутри снежной толщи, а также на ее поверхности.

Изотермический метаморфизм и метаморфизм при температурном градиенте ведут к упрочнению или же разрыхлению и ослаблению слоев снежного покрова. Они, в соответствии с изменениями погоды, непрерывно сменяют друг друга, создавая в толще снега слои разной прочности. Пачка слоев разной прочности уже сама по себе представляет неустойчивую конструкцию, но когда очень слабые слои находятся внутри пачки или в ее основании — это делает конструкцию похожей на карточный домик.

Чтобы предсказывать лавины, связанные с образованием слоя, ослабленного в результате конструктивного метаморфизма, надо прежде всего выяснить — образовался ли он в толще снежного покрова и если образовался, то в каком месте и на какой глубине. Это всегда делалось с помощью шурфования, то есть выкапывания в снегу ямы — шурфа. На стенке шурфа в слоях снега записаны история их отложения и характер изменений, которые в них происходят. Опытный лавинщик, используя набор нехитрых инструментов, довольно легко читает страницы этой записи. Исследуя один слой за другим, можно определить все основные характеристики снега: плотность, размеры и огранку зерен, температуру, реакцию на механические воздействия и т. п. Слои глубинной изморози (снег-плывун) отличаются специфическим характером огранки и формой зерен. Чтобы выявить смену типов метаморфизма и интенсивность изменений кристаллов, шурфы надо копать регулярно через сравнительно короткие промежутки времени. Труд это тяжелый, так как в горах в течение большей части зимы толщина снежного покрова превышает 2 метра, а разреженный воздух затрудняет дыхание. Поэтому даже среди лавинщиков - фанатиков находится не так уж много любителей копать шурфы. В известной мере облегчил жизнь лавинщикам простой и удобный прибор для выявления снега-плывуна, известный как зонд Хефели, твердомер-зонд или пенетрометр (от английского слова «penetrate» — проникать). Это размеченный разъемный металлический трубчатый стержень с конусовидным наконечником, который имеет диаметр, чуть больший диаметра стержня. С помощью груза постоянного веса с отверстием в середине, который свободно движется вдоль стержня до специального упора, зонд забивают в снег. Глубина, на которую стержень погружается в снежный покров при каждом ударе или серии ударов, или нагрузка в килограммах на каждое погружение, характеризует твердость, то есть сопротивление данного слоя проникновению в него постороннего тела. Используя измерения, полученные с помощью твердомера-зонда, можно построить график зависимости изменения твердости слоев Снега с глубиной и выявить ослабленные слои, которые отождествляются со снегом-плывуном. Работа с пенетрометром значительно менее трудоемка, чем копание шурфов, поэтому этот простой прибор широко применяют лавинщики.

Однако ни шурф, ни твердомер-зонд не могут дать сведений о скорости ослабления в той или иной прослойке в зависимости от величины температурного градиента. Почти невозможно с помощью существующих приборов определить механические свойства в такой прослойке, так как, когда к образцу из нее прикладывают некоторую нагрузку, снег частично рассыпается и остается неясным, что же было определено при приложении нагрузки.

И еще одна трудность — правила безопасности запрещают, проведение каких-либо исследований на лавиноопасном склоне, в том числе в предполагаемом месте возникновения лавины. Шурфы обычно копают на максимально близком к месту отрыва лавин и похожем на него участке. Уже в этом заложено определенное допущение, так как полной идентичности в формировании ослабленных прослоек, естественно, быть не может. Но все идет более или менее хорошо, пока не сойдет первая лавина. После этого возникает огромное различие между слоистостью снежного покрова на безопасном участке и лавинном склоне, где обвал снес часть слоев. Поэтому исследование шурфа на безопасном участке становится чисто академическим занятием и уже не может быть полезным для прогноза лавин.

Лавинщики остро нуждаются в дистанционном приборе, с помощью которого можно было бы заглядывать внутрь снежного покрова, не выходя на опасный склон. Но, к сожалению, пока нет даже дистанционного твердомера-зонда, который остается одним из основных приборов для предупреждения о лавинах, обязанных предательскому снегу-плывуну.

Сотрудники Горской службы Чехословакии, организации, которая занимается вызволением людей из разных передряг в горах (в том числе — в случаях лавинных катастроф), Милош Врба и Игорь Гоудек, изучив данные наблюдений лавинных станций за снежной толщей, твердостью снега, определяемой твердомером-зондом, и сходом лавин, получили довольно простые эмпирические соотношения, которые позволяют давать предупреждения о состоянии слоев снега, лежащих на прослойках глубинной изморози. Если твердость ослабленной прослойки меньше некоторого порога, определенного твердомером-зондом, а у соседних верхнего и нижнего слоев она в 2,5—4 раза больше, то такая структура снежного покрова неустойчива, и слои, лежащие на основании с малой величиной твердости, могут обрушиться при небольшом дополнительном импульсе. Если же величина твердости ослабленной прослойки совсем небольшая, а у соседних слоев эта величина больше в 4 раза, то лавину можно ожидать в любой момент. Конечно, это не метод прогноза, а скорее констатация факта неустойчивой структуры снежного покрова, которая может реализоваться в виде лавины.

О глубинной изморози, или снеге-плывуне, знает каждый лавинщик. Считалось, что ослабленный слой в толще снега — это обязательно слой глубинной изморози, и всякий неожиданный сход лавины без особых видимых причин связывали с этим „проклятием лавинщиков". Но появляется все больше фактов, которые свидетельствуют о том, что далеко не всегда глубинная, изморозь является, причиной неожиданного нарушения устойчивости снежного пласта. Не раз отмечались случаи, когда срыв лавины происходил в слое, где было очень мало кристаллов глубинной изморози. При этом в сохранившейся после схода лавины толще снега иногда присутствовал слой снега-плывуна, но не он оказывался причиной обвала. Коварный слой, по которому произошел сдвиг снежного пласта, имел вид обычного мелкозернистого или крупнозернистого снега. Поэтому сейчас слои, по которым происходит срыв лавин, все чаще называют ослабленными, не связывая их с глубинной изморозью, так как внешне похожие слои без характерного для снега-плывуна преобладания ограненных кристаллов могут оказаться как прочными, так и ослабленными. Разница между ними заключается в том, что при приложении нагрузки к ослабленному слою он рассыпается на отдельные зерна или сростки зерен, а прочный слой реагирует на разрушающую нагрузку иначе — он раскалывается на несколько кусков. Причина такой разной реакции на нагрузку остается пока неясной.

Ослабленные прослойки влияют и на возникновение лавин во время снегопадов и метелей. Если перед снегопадом (или метелью) в снежном покрове возник ослабленный слой, то дополнительная нагрузка в виде свежеотложенного снега может вызвать нарушение устойчивости не в новом снеге, а в этом ослабленном слое, и тогда по нему произойдет срыв пласта, который включает как старый, так и новый снег. Возникнет смешанная лавина. При прогнозах во время снегопадов и метелей такие лавины пока не выделяют в особую группу.

Приходится как будто признать, что лавины, связанные с метаморфизмом сухого снежного покрова, еще плохо поддаются прогнозированию. Прямое изучение ослабленных прослоек пока не дает лавинщикам ключа к уверенному прогнозу таких лавин. Но не будем спешить с окончательными выводами.


БИБЛИОТЕКА

От автора
По следам лавин
Лавинные катастрофы
Где падают лавины?
Лавинная опасность возрастает
История слова
Рождение лавин
Лавины во время снегопадов и метелей
Неожиданные лавины
Мокрые лавины
Прогноз непредсказуемого
Лавины в движении
Тигр в шкуре ягненка
Прибор, который еще не создан
Осыпаться, скользить, течь, лететь, прыгать...
Воздушная волна?
Лавины-карлики и лавины-гиганты
Погребенные лавиной
Говорят свидетели
Можно ли уцелеть в лавине?
Спасательные работы
Защита от лавин
Границы и запретные зоны
Предупреждение и прогнозы
Искусственное регулирование лавин
Противолавинные сооружения
Защитная роль леса
Лавиноведение — поиск идеи
Из истории изучения лавин
Штрихи к портретам
Вместо заключения










Рейтинг@Mail.ru Использование контента в рекламных материалах, во всевозможных базах данных для дальнейшего их коммерческого использования, размещение в любых СМИ и Интернете допускаются только с письменного разрешения администрации!