«по следам лавин» |
Отдых на море | |
|
|
НАВИГАЦИЯ | «ПО СЛЕДАМ ЛАВИН» Прибор, который еще не создан | ОГЛАВЛЕНИЕ |
|
Прибор, который еще не созданЧтобы изучать лавины, нужен лавинометр — прибор, который еще не создан. Идея лавинометра была выдвинута лет пятнадцать назад сотрудниками Новосибирского института инженеров железнодорожного транспорта, где уже давно существует Лаборатория по борьбе с заносами, лавинами и размывами, возглавляемая крупным специалистом по метелям А.К.Дюниным. Лавинометр предполагалось сделать в виде трехгранных призм высотой 13 метров, длиной 10 метров и максимальной шириной 1,5 метра. Призмы должны быть установлены на расстоянии 2 метров и своими широкими гранями повернуты друг к другу, а острыми гранями — навстречу лавинному потоку. Двухметровой ширины канал между призмами ориентирован строго в соответствии с направлением движения лавин: именно в нем будет двигаться часть снежного потока, в которой должны производиться все измерения. Каждая призма лавинометра проектировалась как пустотелая конструкция, обшитая листами металла и укрепленная на прочном фундаменте. Внутри можно размещать измерительную аппаратуру, которая позволяла бы определять распределение по вертикали таких величин, как скорость переднего фронта, плотность, пульсации снежной массы, давление лавины и другие показатели. Записывающую аппаратуру предполагалось поместить в бункере в фундаменте лавинометра, с тем чтобы она автоматически включалась в момент приближения лавины. Лавинометр предполагалось установить в одном из мест схода лавин в Хибинах. Но идея так и не была воплощена в жизнь. Установка подобного сооружения — сама по себе довольна сложная инженерная задача, но главным препятствием оказалось отсутствие надежных методов и приборов для определения внутренних характеристик движущейся массы снега. Кроме того, лавинометр — это очень дорогое сооружение, стоимость которого возрастает в связи с необходимостью надежного крепления на прочном фундаменте и монтажа в горных условиях, а отдача этого измерительного комплекса будет невелика, ведь лавины сходят нечасто — один, может быть, два раза в год. А если первая же зима будет без лавин? Вместо сложного лавинометра в Хибинах была установлена металлическая конструкция, по внешнему виду напоминающая модернистский монумент. На этой установке на разных высотах от поверхности грунта закреплены датчики давления, которые позволили определять величину давления снежного потока по вертикали и, опираясь на эти данные, делать качественные выводы о распределении плотности в лавинном теле. Измерения выявили особую роль отдельных плотных снежных комьев и глыб, которые, как оказалось, бьют сильнее, чем окружающий их менее плотный и несвязный лавинный снег. Работать с конструкцией оказалось непросто. После схода очередной лавины нужно было очищать пространство перед прибором от завала, в котором плотность снега превышала 0,5 грамма на кубический сантиметр. Кроме того, определять давление оказалось возможным только в относительно небольшом диапазоне скоростей, так как лавинное тело приближалось к установке при скоростях от 24 до 32 метров в секунду. Во Франции лавинщики решили реализовать идею лавинометра из существующих подручных средств, используя те приборы и оборудование, которые уже созданы, правда, для измерений в других средах. Чтобы определять плотность снега в лавине, они заделали в грунт на ее пути источник гамма-излучения, а над ним, выше возможной толщины лавины, подвесили счетчик излучения. И то, и другое — узлы обычного стандартного гамма - плотномера для снежного покрова, который по величине ослабления интенсивности излучения в толще снега позволяет определять его водность и плотность. Для измерения скорости снежного потока на жесткой прочной основе французские лавинщики установили обычную гидрометрическую вертушку, с помощью которой измеряют скорость течения воды в реках. Можно установить несколько вертушек по вертикали, с тем чтобы узнать, как изменяется скорость снежного потока по глубине лавинного тела. Такие установки были реализованы в двух небольших лавиносборах во Французских Альпах, где зимой выпадает много снега, что позволяет с помощью взрывов спустить на эти сооружения за зиму несколько лавин. Пока опубликованы только первые результаты экспериментов. Трудностей здесь много. Впрочем, есть сомнения в достоверности результатов, получаемых с помощью вертушек, так как снежный поток далеко не всегда ведет себя, как вода. Пожалуй, наиболее остроумно задачу измерения некоторых характеристик лавин решили (параллельно) советский исследователь А. В. Брюханов и француз М. Кан. Если все предыдущие создатели лавинометров ставили их на пути снежного потока и ждали, пока лавина сойдет сама, или вызывали ее искусственно с помощью взрывов, здесь был предложен совершенно иной путь — сделать лавинометр переносным. И такой лавинометр был создан из ... двух аэрофотокамер. Две авиационные фотокамеры устанавливались на штативах на определенном расстоянии друг от друга и с помощью специального синхронизатора времени одновременно через равные интервалы делали последовательные снимки движущейся лавины. Для каждого момента получалось два снимка, составляющих: стереопару, которая дает объемное изображение снимаемого объекта. Таким путем получали стереопары для всего пути движения лавины. На специальном стандартном оборудовании для обработки стереопар можно получить много информации о лавине — скорость движения переднего фронта, изменение объема по мере движения, плотность лавинного тела, изменение его формы во времени. Обработку данных можно вести с помощью вычислительной техники. Микио Седа, один из известных японских лавинщиков, изучал движение лавин с помощью ускоренной киносъемки: число кадров в секунду известно, а на пути движения снежного потока расставлялись знаки-реперы, отмечающие расстояние. Таким способом можно определять скорость переднего фронта лавины и изменение формы лавинного тела в процессе движения. Конечно, фото- и киносъемка при изучении лавин требуют соответствующей погоды с хорошей видимостью и освещенностью. Прекрасные результаты фото- и кино методы дают при съемке мокрых лавин. Эти лавины не пылят и не закрывают пылевым облаком основное лавинное тело. И все же внешнего портрета лавины недостаточно, так как все, что происходит внутри тела лавины, остается загадкой. Для изучения некоторых характеристик лавин, прежде всего силы удара, в последние годы стали создавать установки, имитирующие лавины. На поляне Азау у подножья Эльбруса сотрудники Института механики Московского государственного университета проложили по склону рельсы, по которым движется обыкновенная тележка. На тележку загружают вырезанный из естественного снежного покрова блок, и она вместе с грузом мчится вниз по рельсам. В нижней части пути тележка налетает на препятствие и резко останавливается, а блок снега, сорвавшись с тележки, несколько мгновений продолжает свободный полет до щита, на котором смонтированы датчики, фиксирующие давление. Меняя место установки тележки на круто наклоненном, как в аттракционе „русские горы", рельсовом пути, можно менять скорость тележки, следовательно, и снежного образца. В Швейцарии Лавина имитируется по-иному. У задней торцовой стены Швейцарского федерального института изучения снега и лавин, который стоит на крутом склоне горы Вайсфлуйох, сооружен металлический лоток длиной 20 и шириной 2,5 метра. В верхней части лотка находится бункер, в который можно загружать до нескольких кубометров снега. В нижней — измерительный щит с датчиками, от которых паутина проводов ведет в здание института, где все данные выводятся на специальный пульт. На склоне сопки на острове Сахалин сотрудники Новосибирского института инженеров железнодорожного транспорта построили простой деревянный лоток длиной 100 метров, по которому они спускают небольшие искусственные лавины для измерения силы удара. Но все установки, имитирующие лавину, обладают определенными ограничениями: на них нельзя достигнуть тех скоростей, которые бывают у многих естественных лавин, снежный образец очень часто представлен цельным снежным блоком, в то время как у естественных лавин снег обычно теряет связность, хотя иногда и включает в общую массу отдельные комья и блоки связного снега, и, наконец, размеры искусственной лавины много меньше размеров реальных лавин, а масштабный эффект может оказаться весьма существенным. Есть еще одна неопределенность, присущая всем инструментальным методам наблюдений за лавинами: как правило, наблюдают искусственно спущенные лавины. Насколько условия их движения соответствуют условиям движения реальной лавины — никто не знает. Все-таки, если обвал возник в результате искусственного воздействия на снег, то характер поверхности, по которой скользит лавина, и состояние вовлекаемого в движение снега не могут точно соответствовать тому же в естественной лавине, так как ко времени естественного отрыва снежный покров должен приобретать какие-то новые черты. Если теперь подвести итог всем усилиям определить с помощью тех или иных методов или приборов некоторые основные характеристики лавин — скорость, плотность и давление на препятствие,— то оказывается, что число измерений давления сейчас во всем мире значительно перевалило за сотню; число же измерений скоростей гораздо скромнее — их только десятки, а число измерений плотности вообще ничтожно - буквально единицы! Заканчивая этот раздел, хочется вернуться к открывающей его фразе: „Чтобы изучать лавины, нужен лавинометр — прибор, который еще не создан".
|
|
На главную | Фотогалерея | Пятигорск | Кисловодск | Ессентуки | Железноводск | Архыз | Домбай | Приэльбрусье | Красная поляна | Цей | Экскурсии |
Использование контента в рекламных материалах, во всевозможных базах данных для дальнейшего их коммерческого использования, размещение в любых СМИ и Интернете допускаются только с письменного разрешения администрации! |